Abstract A novel material with tunable dynamic insulations, thermal energy storage, and structural properties is presented in this work. The so-presented NRG&STRUCT concrete is a porous concrete made of microencapsulated phase-change materials (mPCM) which are embedded within the cement-based mix. A strength-based theory accounting for the porosity together with a quality-based index, and the mPCM content are the most relevant parameters to control the structural and energy performance in an NRG&STRUCT concrete. The work thus presents the energy performance of a demo-building made of this material. Layer-wise graded NRG&STRUCT concrete are used in external walls. At each layer, the material is characterized by its strength index and mPCM content, which both play the role of design variables to be determined by solving an optimization problem where the objective function is the energy consumption for keeping the indoor thermal comfort, computed by EnergyPlus. These design variables are continuous, allowing the use of gradient-based optimization solvers. The structural stability of the energetically optimal solutions is forced via constraints on minimal density.

A novel structural and energy cementitious material for nearly-zero energy buildings

Fachinotti, Victor;Caggiano, Antonio
2024-01-01

Abstract

Abstract A novel material with tunable dynamic insulations, thermal energy storage, and structural properties is presented in this work. The so-presented NRG&STRUCT concrete is a porous concrete made of microencapsulated phase-change materials (mPCM) which are embedded within the cement-based mix. A strength-based theory accounting for the porosity together with a quality-based index, and the mPCM content are the most relevant parameters to control the structural and energy performance in an NRG&STRUCT concrete. The work thus presents the energy performance of a demo-building made of this material. Layer-wise graded NRG&STRUCT concrete are used in external walls. At each layer, the material is characterized by its strength index and mPCM content, which both play the role of design variables to be determined by solving an optimization problem where the objective function is the energy consumption for keeping the indoor thermal comfort, computed by EnergyPlus. These design variables are continuous, allowing the use of gradient-based optimization solvers. The structural stability of the energetically optimal solutions is forced via constraints on minimal density.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1222758
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact