In a previous paper we proved that if an $L$-function $F$ from the Selberg class has degree $2$, its conductor $q_F$ is a prime number and $F$ is weakly twist-regular at all primes $p\neq q_F$, then $F$ has a polynomial Euler product. In this paper we extend this result to $L$-functions of degree 2 with square-free conductor $q_F$, which are weakly twist-regular at all primes $p\nmid q_F$.

Twists by Dirichlet characters and polynomial Euler products of L-functions, II}

A. Perelli
2023-01-01

Abstract

In a previous paper we proved that if an $L$-function $F$ from the Selberg class has degree $2$, its conductor $q_F$ is a prime number and $F$ is weakly twist-regular at all primes $p\neq q_F$, then $F$ has a polynomial Euler product. In this paper we extend this result to $L$-functions of degree 2 with square-free conductor $q_F$, which are weakly twist-regular at all primes $p\nmid q_F$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1224036
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact