This paper introduces an Ultra-Low Voltage (ULV) OTA topology combining a bulk-driven fully-differential input stage with local common-mode feedback (CMFB), a differential to single-ended converter based on an improved current mirror whose accuracy is boosted thanks to a ULV error amplifier, and a cascode output stage with optimal bias settings for proper operation with a 0.3V supply voltage. The proposed topology allows to accurately set the bias current in each circuit branch, thus guaranteeing a robust biasing despite PVT variations. The ULV OTA has been designed in the 180nm CMOS technology from TSMC, and can achieve a voltage gain as high as 56 dB with a power consumption lower than 2.35 nW. Results of parametric and Monte Carlo simulations have confirmed the strong resilience of the proposed OTA to PVT variations. Its capability to operate at a supply voltage of 0.3V with the above mentioned specs makes the proposed OTA ideal for analog applications in IoT systems and biomedical devices.

A 0.3V, 2.34nW and 56db Gain Bulk-Driven OTA Exploiting Cascode Output Stages and Enhanced Current Mirrors

Sala, Riccardo Della;Aiello, Orazio;
2025-01-01

Abstract

This paper introduces an Ultra-Low Voltage (ULV) OTA topology combining a bulk-driven fully-differential input stage with local common-mode feedback (CMFB), a differential to single-ended converter based on an improved current mirror whose accuracy is boosted thanks to a ULV error amplifier, and a cascode output stage with optimal bias settings for proper operation with a 0.3V supply voltage. The proposed topology allows to accurately set the bias current in each circuit branch, thus guaranteeing a robust biasing despite PVT variations. The ULV OTA has been designed in the 180nm CMOS technology from TSMC, and can achieve a voltage gain as high as 56 dB with a power consumption lower than 2.35 nW. Results of parametric and Monte Carlo simulations have confirmed the strong resilience of the proposed OTA to PVT variations. Its capability to operate at a supply voltage of 0.3V with the above mentioned specs makes the proposed OTA ideal for analog applications in IoT systems and biomedical devices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1258597
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact