The problem of estimating the state of discrete-time linear systems when uncertainties affect the system matrices is addressed. A quadratic cost function is considered, involving a finite number of recent measurements and a prediction vector. This leads to state the estimation problem in the form of a regularized least-squares one with uncertain data. The optimal solution (involving on-line scalar minimization) together with a suitable closed-form approximation are given. For both the resulting receding-horizon estimators convergence results are derived and an operating procedure to select the design parameters is proposed.
Robust receding-horizon estimation for uncertain discrete-time linear systems
Alessandri, A.;Baglietto, M.;Battistelli, G.
2003-01-01
Abstract
The problem of estimating the state of discrete-time linear systems when uncertainties affect the system matrices is addressed. A quadratic cost function is considered, involving a finite number of recent measurements and a prediction vector. This leads to state the estimation problem in the form of a regularized least-squares one with uncertain data. The optimal solution (involving on-line scalar minimization) together with a suitable closed-form approximation are given. For both the resulting receding-horizon estimators convergence results are derived and an operating procedure to select the design parameters is proposed.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
			Non ci sono file associati a questo prodotto.
		
		
	
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



