As an application of Turan sieve, we give upper bounds for the number of elliptic curves defined over Q(T) in some families having positive rank, obtaining in particular that these form a subset of density zero. This confirms Cowan's conjecture (Cowan in Conjecture: 100% of elliptic surfaces over Q have rank zero. Preprint. https://arxiv.org/ pdf/2009.08622.pdf, 2020) in the case m, n <= 2.

On the typical rank of elliptic curves over Q(T)

Battistoni, F;Bettin, S;
2022-01-01

Abstract

As an application of Turan sieve, we give upper bounds for the number of elliptic curves defined over Q(T) in some families having positive rank, obtaining in particular that these form a subset of density zero. This confirms Cowan's conjecture (Cowan in Conjecture: 100% of elliptic surfaces over Q have rank zero. Preprint. https://arxiv.org/ pdf/2009.08622.pdf, 2020) in the case m, n <= 2.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1097301
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact