The complete structure revision of the RE2PdGe3 (RE = rare-earth metal) series revealed that Yb2PdGe3 is the only AlB2 ordered superstructure. Good-quality single crystals of this compound were successfully grown from molten indium flux, enabling accurate single-crystal investigations. Yb2PdGe3 crystallizes with the Ce2CoSi3-type structure in the hexagonal space group P6/mmm (no. 191) with lattice parameters a = 8.468(1) Å and c = 4.0747(7) Å. This structure is a four-order derivative of AlB2, composed of planar ∞2[PdGe3] honeycomb layers spaced by Yb species, located at the center of Ge6 and Ge4Pd2 hexagons. A superconducting transition is observed below the critical temperature of 4 K. A divalent state of Yb is deduced from magnetic susceptibility measurements below room temperature, which indicate an almost nonmagnetic behavior. A charge transfer from Yb to Pd and Ge was evidenced by the Quantum Theory of Atoms in Molecules (QTAIM) effective charges; polar four-atomic Ge–Pd/Yb and two-atomic Pd–Yb bonds were observed from the ELI-D (electron localizability indicator), partial ELI-D, and ELI-D/QTAIM intersections. The bonding interactions between Ge atoms within regular Ge6 hexagons are found to be intermediate between single bonds, as in elemental Ge, and higher-order bonds in the hypothetic Ge6H6 and Ge66– aromatic molecules.

Flux Growth, Crystal Structure, and Chemical Bonding of Yb2PdGe3, an AlB2 Superstructure within the Rare-Earth Series

Freccero R.;Solokha P.;De Negri S.
2023-01-01

Abstract

The complete structure revision of the RE2PdGe3 (RE = rare-earth metal) series revealed that Yb2PdGe3 is the only AlB2 ordered superstructure. Good-quality single crystals of this compound were successfully grown from molten indium flux, enabling accurate single-crystal investigations. Yb2PdGe3 crystallizes with the Ce2CoSi3-type structure in the hexagonal space group P6/mmm (no. 191) with lattice parameters a = 8.468(1) Å and c = 4.0747(7) Å. This structure is a four-order derivative of AlB2, composed of planar ∞2[PdGe3] honeycomb layers spaced by Yb species, located at the center of Ge6 and Ge4Pd2 hexagons. A superconducting transition is observed below the critical temperature of 4 K. A divalent state of Yb is deduced from magnetic susceptibility measurements below room temperature, which indicate an almost nonmagnetic behavior. A charge transfer from Yb to Pd and Ge was evidenced by the Quantum Theory of Atoms in Molecules (QTAIM) effective charges; polar four-atomic Ge–Pd/Yb and two-atomic Pd–Yb bonds were observed from the ELI-D (electron localizability indicator), partial ELI-D, and ELI-D/QTAIM intersections. The bonding interactions between Ge atoms within regular Ge6 hexagons are found to be intermediate between single bonds, as in elemental Ge, and higher-order bonds in the hypothetic Ge6H6 and Ge66– aromatic molecules.
File in questo prodotto:
File Dimensione Formato  
acs.inorgchem.2c03303.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in versione editoriale
Dimensione 8.79 MB
Formato Adobe PDF
8.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1107823
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact