We report a one-step synthesis of halide perovskite nanocrystals embedded in amphiphilic polymer (poly(acrylic acid)-block-poly(styrene), PAA-b-PS) micelles, based on injecting a dimethylformamide solution of PAA-b-PS, PbBr2, ABr (A = Cs, formamidinium, or both) and “additive” molecules in toluene. These bifunctional or trifunctional short chain organic molecules improve the nanocrystal–polymer compatibility, increasing the nanocrystal stability against polar solvents and high flux irradiation (the nanocrystals retain almost 80% of their photoluminescence after 1 h of 3.2 w/cm2 irradiation). If the nanocrystals are suspended in toluene, the coil state of the polymer allows the nanocrystals to undergo halide exchange, enabling emission color tunability. If the nanocrystals are suspended in methanol, or dried as powders, the polymer is in the globule state, and they are inert to halide exchange. By mixing three primary colors we could prepare stable, multicolor emissive samples (for example, white emitting powders) and a UV-to-white color converting layer for light-emitting diodes entirely made of perovskite nanocrystals.

Switchable Anion Exchange in Polymer-Encapsulated APbX3 Nanocrystals Delivers Stable All-Perovskite White Emitters

Muhammad Imran;Luca Goldoni;Matilde Cirignano;Francesco Di Stasio;Liberato Manna
2021-01-01

Abstract

We report a one-step synthesis of halide perovskite nanocrystals embedded in amphiphilic polymer (poly(acrylic acid)-block-poly(styrene), PAA-b-PS) micelles, based on injecting a dimethylformamide solution of PAA-b-PS, PbBr2, ABr (A = Cs, formamidinium, or both) and “additive” molecules in toluene. These bifunctional or trifunctional short chain organic molecules improve the nanocrystal–polymer compatibility, increasing the nanocrystal stability against polar solvents and high flux irradiation (the nanocrystals retain almost 80% of their photoluminescence after 1 h of 3.2 w/cm2 irradiation). If the nanocrystals are suspended in toluene, the coil state of the polymer allows the nanocrystals to undergo halide exchange, enabling emission color tunability. If the nanocrystals are suspended in methanol, or dried as powders, the polymer is in the globule state, and they are inert to halide exchange. By mixing three primary colors we could prepare stable, multicolor emissive samples (for example, white emitting powders) and a UV-to-white color converting layer for light-emitting diodes entirely made of perovskite nanocrystals.
File in questo prodotto:
File Dimensione Formato  
Switchable.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in versione editoriale
Dimensione 4.71 MB
Formato Adobe PDF
4.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1145795
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 51
social impact