In the 1990s, a sampling network for the biomonitoring of forests using epiphytic lichen diversity was established in the eastern Iberian Peninsula. This area registered air pollution impacts by winds from the Andorra thermal power plant, as well as from photo-oxidants and nitrogen depositions from local and long-distance transport. In 1997, an assessment of the state of lichen communities was carried out by calculating the Index of Atmospheric Purity. In addition, visible symptoms of morphological injury were recorded in nine macrolichens pre-selected by the speed of symptom evolution and their wide distribution in the territory. The thermal power plant has been closed and inactive since 2020. During 2022, almost 25 years later, seven stations of this previously established biomonitoring were revaluated. To compare the results obtained in 1997 and 2022, the same methodology was used, and data from air quality stations were included. We tested if, by integrating innovative methodologies (NIRS) into biomonitoring tools, it is possible to render an integrated response. The results displayed a general decrease in biodiversity in several of the sampling plots and a generalised increase in damage symptoms in the target lichen species studied in 1997, which seem to be the consequence of a multifactorial response.

Lichen Biodiversity and Near-Infrared Metabolomic Fingerprint as Diagnostic and Prognostic Complementary Tools for Biomonitoring: A Case Study in the Eastern Iberian Peninsula

Casale M.;Giordani P.;
2023-01-01

Abstract

In the 1990s, a sampling network for the biomonitoring of forests using epiphytic lichen diversity was established in the eastern Iberian Peninsula. This area registered air pollution impacts by winds from the Andorra thermal power plant, as well as from photo-oxidants and nitrogen depositions from local and long-distance transport. In 1997, an assessment of the state of lichen communities was carried out by calculating the Index of Atmospheric Purity. In addition, visible symptoms of morphological injury were recorded in nine macrolichens pre-selected by the speed of symptom evolution and their wide distribution in the territory. The thermal power plant has been closed and inactive since 2020. During 2022, almost 25 years later, seven stations of this previously established biomonitoring were revaluated. To compare the results obtained in 1997 and 2022, the same methodology was used, and data from air quality stations were included. We tested if, by integrating innovative methodologies (NIRS) into biomonitoring tools, it is possible to render an integrated response. The results displayed a general decrease in biodiversity in several of the sampling plots and a generalised increase in damage symptoms in the target lichen species studied in 1997, which seem to be the consequence of a multifactorial response.
File in questo prodotto:
File Dimensione Formato  
Moya et al. - 2023 - Lichen Biodiversity and Near-Infrared Metabolomic .pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 4.41 MB
Formato Adobe PDF
4.41 MB Adobe PDF Visualizza/Apri
jof-09-01064-s001.zip

accesso aperto

Descrizione: Suppl Mat
Tipologia: Altro materiale allegato
Dimensione 5.37 MB
Formato Zip File
5.37 MB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1156792
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact