Extracellular vesicles (EVs) have emerged as potential vehicles for targeted drug delivery and diagnostic applications. However, achieving consistent and reliable functionalization of EV membranes remains a challenge. Copper-catalyzed click chemistry, commonly used for EV surface modification, poses limitations due to cytotoxicity and interference with biological systems. To overcome these limitations, we developed a standardized method for functionalizing an EV membrane via copper-free click chemistry. EVs derived from plasma hold immense potential as diagnostic and therapeutic agents. However, the isolation and functionalization of EVs from such a complex biofluid represent considerable challenges. We compared three different EV isolation methods to obtain an EV suspension with an optimal purity/yield ratio, and we identified sucrose cushion ultracentrifugation (sUC) as the ideal protocol. We then optimized the reaction conditions to successfully functionalize the plasma-EV surface through a copper-free click chemistry strategy with a fluorescently labeled azide, used as a proof-of-principle molecule. Click-EVs maintained their identity, size, and, more importantly, capacity to be efficiently taken up by responder tumor cells. Moreover, once internalized, click EVs partially followed the endosomal recycling route. The optimized reaction conditions and characterization techniques presented in this study offer a foundation for future investigations and applications of functionalized EVs in drug delivery, diagnostics, and therapeutics.

Standardized Method to Functionalize Plasma-Extracellular Vesicles via Copper-Free Click Chemistry for Targeted Drug Delivery Strategies

Ciferri MC;Bruno S;Rosenwasser N;Gorgun C;Reverberi D;Gagliani MC;Cortese K;Quarto R;Tasso R.
2024-01-01

Abstract

Extracellular vesicles (EVs) have emerged as potential vehicles for targeted drug delivery and diagnostic applications. However, achieving consistent and reliable functionalization of EV membranes remains a challenge. Copper-catalyzed click chemistry, commonly used for EV surface modification, poses limitations due to cytotoxicity and interference with biological systems. To overcome these limitations, we developed a standardized method for functionalizing an EV membrane via copper-free click chemistry. EVs derived from plasma hold immense potential as diagnostic and therapeutic agents. However, the isolation and functionalization of EVs from such a complex biofluid represent considerable challenges. We compared three different EV isolation methods to obtain an EV suspension with an optimal purity/yield ratio, and we identified sucrose cushion ultracentrifugation (sUC) as the ideal protocol. We then optimized the reaction conditions to successfully functionalize the plasma-EV surface through a copper-free click chemistry strategy with a fluorescently labeled azide, used as a proof-of-principle molecule. Click-EVs maintained their identity, size, and, more importantly, capacity to be efficiently taken up by responder tumor cells. Moreover, once internalized, click EVs partially followed the endosomal recycling route. The optimized reaction conditions and characterization techniques presented in this study offer a foundation for future investigations and applications of functionalized EVs in drug delivery, diagnostics, and therapeutics.
File in questo prodotto:
File Dimensione Formato  
Ciferri et al 2023 ACS-compresso.pdf

accesso aperto

Tipologia: Documento in versione editoriale
Dimensione 904.03 kB
Formato Adobe PDF
904.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1169676
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact