We consider a family of vectorial models for cohesive fracture, which may incorporate SO(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SO}(n)$$\end{document}-invariance. The deformation belongs to the space of generalized functions of bounded variation and the energy contains an (elastic) volume energy, an opening-dependent jump energy concentrated on the fractured surface, and a Cantor part representing diffuse damage. We show that this type of functional can be naturally obtained as Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-limit of an appropriate phase-field model. The energy densities entering the limiting functional can be expressed, in a partially implicit way, in terms of those appearing in the phase-field approximation.
Phase-Field Approximation of a Vectorial, Geometrically Nonlinear Cohesive Fracture Energy
Iurlano, Flaviana
2024-01-01
Abstract
We consider a family of vectorial models for cohesive fracture, which may incorporate SO(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textrm{SO}(n)$$\end{document}-invariance. The deformation belongs to the space of generalized functions of bounded variation and the energy contains an (elastic) volume energy, an opening-dependent jump energy concentrated on the fractured surface, and a Cantor part representing diffuse damage. We show that this type of functional can be naturally obtained as Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-limit of an appropriate phase-field model. The energy densities entering the limiting functional can be expressed, in a partially implicit way, in terms of those appearing in the phase-field approximation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



