This paper presents the development of a MEMS based capacitive tactile sensor intended to be incorporated into a tactile array as the core element of a biomimetic fingerpad. The use of standard microfabrication technologies in realising the device allowed a cost efficient fabrication involving only a few process steps. A low noise readout electronics system was developed for measuring the sensor response. The performance of both bare and packaged sensors was evaluated by direct probing of individual capacitive sensor units and characterising their response to load-unload indentation cycles. © 2010 Elsevier B.V.
Development of a bioinspired MEMS based capacitive tactile sensor for a robotic finger
Recchiuto C.;
2011-01-01
Abstract
This paper presents the development of a MEMS based capacitive tactile sensor intended to be incorporated into a tactile array as the core element of a biomimetic fingerpad. The use of standard microfabrication technologies in realising the device allowed a cost efficient fabrication involving only a few process steps. A low noise readout electronics system was developed for measuring the sensor response. The performance of both bare and packaged sensors was evaluated by direct probing of individual capacitive sensor units and characterising their response to load-unload indentation cycles. © 2010 Elsevier B.V.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



