Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis. Heat production by LANCL1/2-overexpressing versus double-silenced cells was compared in rat H9c2 cardiomyocytes with two different methods: differential temperature measurements using sensitive thermistor probes and differential isothermal calorimetry. Overexpressing cells generate an approximately double amount of thermal power compared with double-silenced cells, and addition of ABA further doubles heat production in overexpressing cells. With the temperature probes, we find a timescale of approximately 4 min for thermogenesis to 'turn on' after nutrient addition. We provide direct measurements of increased heat production triggered by the ABA/LANCL hormone receptors system. Combined with previous work on oxphos decoupling, these results support the role of the ABA/LANCL hormone receptors system as a hitherto unknown regulator of cell thermogenesis.

Thermal measurements support a role of the ABA/LANCL1−2 hormone/receptors system in thermogenesis

Flavio Fontanelli;Laura Sturla;Mario Passalacqua;Simona Delsante;ELENA ZOCCHI
2024-01-01

Abstract

Abscisic acid (ABA) is a conserved 'stress hormone' in unicellular organisms, plants and animals. In mammals, ABA and its receptors LANCL1 and LANCL2 stimulate insulin-independent cell glucose uptake and oxidative metabolism: overexpression of LANCL1/2 increases, and their silencing conversely reduces, mitochondrial number, respiration and proton gradient dissipation in muscle cells and in brown adipocytes. We hypothesized that the ABA/LANCL hormone/receptors system could be involved in thermogenesis. Heat production by LANCL1/2-overexpressing versus double-silenced cells was compared in rat H9c2 cardiomyocytes with two different methods: differential temperature measurements using sensitive thermistor probes and differential isothermal calorimetry. Overexpressing cells generate an approximately double amount of thermal power compared with double-silenced cells, and addition of ABA further doubles heat production in overexpressing cells. With the temperature probes, we find a timescale of approximately 4 min for thermogenesis to 'turn on' after nutrient addition. We provide direct measurements of increased heat production triggered by the ABA/LANCL hormone receptors system. Combined with previous work on oxphos decoupling, these results support the role of the ABA/LANCL hormone receptors system as a hitherto unknown regulator of cell thermogenesis.
File in questo prodotto:
File Dimensione Formato  
rsob.240107.pdf

accesso aperto

Descrizione: articolo
Tipologia: Documento in versione editoriale
Dimensione 1.75 MB
Formato Adobe PDF
1.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1228956
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact