This article discusses the manuscript recently published in the World Journal of Gastroenterology, which explores the application of deep learning models in decision-making processes via wireless capsule endoscopy. Integrating artificial intelligence (AI) into gastrointestinal disease diagnosis represents a transformative step toward precision medicine, enhancing real-time accuracy in detecting multi-category lesions at earlier stages, including small bowel lesions and precancerous polyps, ultimately improving patient outcomes. However, the use of AI in clinical settings raises ethical considerations that extend beyond technological potential. Issues of patient privacy, data security, and potential diagnostic biases require careful attention. AI models must prioritize diverse and representative datasets to mitigate inequities and ensure diagnostic accuracy across populations. Furthermore, balancing AI with clinical expertise is crucial, positioning AI as a supportive tool rather than a replacement for physician judgment. Addressing these ethical challenges will support the responsible deployment of AI, through equitable contribution to patient-centered care.
Artificial intelligence in gastroenterology: Ethical and diagnostic challenges in clinical practice
Ramoni, Davide;Scuricini, Alessandro;Carbone, Federico;Liberale, Luca;Montecucco, Fabrizio
2025-01-01
Abstract
This article discusses the manuscript recently published in the World Journal of Gastroenterology, which explores the application of deep learning models in decision-making processes via wireless capsule endoscopy. Integrating artificial intelligence (AI) into gastrointestinal disease diagnosis represents a transformative step toward precision medicine, enhancing real-time accuracy in detecting multi-category lesions at earlier stages, including small bowel lesions and precancerous polyps, ultimately improving patient outcomes. However, the use of AI in clinical settings raises ethical considerations that extend beyond technological potential. Issues of patient privacy, data security, and potential diagnostic biases require careful attention. AI models must prioritize diverse and representative datasets to mitigate inequities and ensure diagnostic accuracy across populations. Furthermore, balancing AI with clinical expertise is crucial, positioning AI as a supportive tool rather than a replacement for physician judgment. Addressing these ethical challenges will support the responsible deployment of AI, through equitable contribution to patient-centered care.| File | Dimensione | Formato | |
|---|---|---|---|
|
102725.pdf
accesso aperto
Tipologia:
Documento in versione editoriale
Dimensione
1.5 MB
Formato
Adobe PDF
|
1.5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



