Tetragonal InSeI is an interesting low-dimensional metal chalcohalide due to its composition and anisotropic crystal structure composed of helical chains, which give rise to optoelectronic properties with potential application in photodetectors, optical thermometers, and spintronic devices. However, there is a lack of experimental studies on its anisotropic or chiral behavior. Here we present the crystal structure of an unreported InSeI polymorph and study its lattice dynamics in bulk crystals and exfoliated nanowires by polarized Raman spectroscopy for two non-equivalent crystallographic planes. We determine the orientation of the helical chains and distinguish between crystallographic planes by linearly polarized measurements, evaluating the angle-dependent intensity of the modes, which allows assigning each mode to its representation. Circularly polarized Raman measurements do not reveal chiral phonons, despite the helical chains and anisotropic crystal structure. These results offer insight into the crystal structure of InSeI, which is fundamental for the fabrication of orientation-dependent optoelectronic and spintronic devices.

A new helical InSeI polymorph: crystal structure and polarized Raman spectroscopy study

Solokha, Pavlo;De Negri, Serena;
2025-01-01

Abstract

Tetragonal InSeI is an interesting low-dimensional metal chalcohalide due to its composition and anisotropic crystal structure composed of helical chains, which give rise to optoelectronic properties with potential application in photodetectors, optical thermometers, and spintronic devices. However, there is a lack of experimental studies on its anisotropic or chiral behavior. Here we present the crystal structure of an unreported InSeI polymorph and study its lattice dynamics in bulk crystals and exfoliated nanowires by polarized Raman spectroscopy for two non-equivalent crystallographic planes. We determine the orientation of the helical chains and distinguish between crystallographic planes by linearly polarized measurements, evaluating the angle-dependent intensity of the modes, which allows assigning each mode to its representation. Circularly polarized Raman measurements do not reveal chiral phonons, despite the helical chains and anisotropic crystal structure. These results offer insight into the crystal structure of InSeI, which is fundamental for the fabrication of orientation-dependent optoelectronic and spintronic devices.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1251362
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact