The demand for hybrid microelectronic systems has arisen because of the trend toward miniaturization of devices, in particular in lab-on-a-chip devices for biomedicine. This paper aims to describe the development of microelectromagnetic structures for the manipulation of biological cells. An innovative, low-cost, and highly practical approach based on the use of parallel conductive wires is described. The types of connection and their effect on magnetic field shape were investigated with simulations. The strategy to estimate the required concentration of nanoparticles and applied current to trap biological cells was discussed, and tests were carried using an red fluorescent protein (RFP)-modified mouse melanoma cell line (B16 RFP). The prospects and efficiency of such technology of microwire production are demonstrated.

Design of Conductive Microwire Systems for Manipulation of Biological Cells

Omelyanchik A.;
2018-01-01

Abstract

The demand for hybrid microelectronic systems has arisen because of the trend toward miniaturization of devices, in particular in lab-on-a-chip devices for biomedicine. This paper aims to describe the development of microelectromagnetic structures for the manipulation of biological cells. An innovative, low-cost, and highly practical approach based on the use of parallel conductive wires is described. The types of connection and their effect on magnetic field shape were investigated with simulations. The strategy to estimate the required concentration of nanoparticles and applied current to trap biological cells was discussed, and tests were carried using an red fluorescent protein (RFP)-modified mouse melanoma cell line (B16 RFP). The prospects and efficiency of such technology of microwire production are demonstrated.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1251560
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 9
social impact