New composite materials consisting of polymer matrix with PZT and NdFeB microparticles were prepared and investigated in the work. It was found that magnetic properties such as saturation magnetization, coercivity, permeability, depend on mass concentration of the ferromagnetic particles in the samples. Also it was found that all samples had electrical polarization in DC external electric field. The electric properties such as coercivity, remanent polarization, the maximum polarization value, had changes in the external constant magnetic field 1.1 kOe. These changes depended on both concentrations of ferromagnetic and ferroelectric particles. This type of magnetoelectric transformation allows us to classify new materials as multiferroic materials. These new composite materials can easily be prepared of any shape, the final materials are flexible and resistant to external chemical influences. The area of application of new multiferroic materials varies from sensors to autonomous energy sources.

Composite multiferroic materials consisting of NdFeB and PZT particles embedded in elastic matrix: The appearance of electrical polarization in a constant magnetic field

Omelyanchik A.;
2018-01-01

Abstract

New composite materials consisting of polymer matrix with PZT and NdFeB microparticles were prepared and investigated in the work. It was found that magnetic properties such as saturation magnetization, coercivity, permeability, depend on mass concentration of the ferromagnetic particles in the samples. Also it was found that all samples had electrical polarization in DC external electric field. The electric properties such as coercivity, remanent polarization, the maximum polarization value, had changes in the external constant magnetic field 1.1 kOe. These changes depended on both concentrations of ferromagnetic and ferroelectric particles. This type of magnetoelectric transformation allows us to classify new materials as multiferroic materials. These new composite materials can easily be prepared of any shape, the final materials are flexible and resistant to external chemical influences. The area of application of new multiferroic materials varies from sensors to autonomous energy sources.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1251562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact