This research suggests a novel method to use steel cables as a structural bracing system. The Moment Resisting Frame (MRF) works in tandem with the cable bracings when this method is used. The suggested bracing model can address the fundamental problem of current cable bracing methods, namely the lack of flexibility while keeping costs to a minimum. This approach requires no additional equipment, and despite the minor alterations to the structure, it uses MRF’s full flexibility by delaying the brace action while minimizing substantial and undesirable displacements. This bracing method combines the major advantages of MRFs with cable bracing. For 1, 3, and 6-story 2D frames, the performance of frames that use the provided bracing mechanism was investigated. The numerical results of the dynamic analyses done for this study reveal that the proposed bracing approach was successful for the seismic protection of the structure. The relative displacement of the floors is substantially decreased when using the suggested method, yet the designer may make the structure’s behavior predictable by adjusting the model specifications. The fluctuations in axial forces and moments transferred to the beams and columns, as well as the forces applied to the structural cables, and most importantly, the stresses subjected to the central plate, are investigated in this study. Another advantage of this research is that it demonstrates how this method may lead all cables to share a considerable portion of the load-bearing capacity.

Seismic behavior of cable braces strengthened with a central steel plate

Rooshenas, Arash;
2022-01-01

Abstract

This research suggests a novel method to use steel cables as a structural bracing system. The Moment Resisting Frame (MRF) works in tandem with the cable bracings when this method is used. The suggested bracing model can address the fundamental problem of current cable bracing methods, namely the lack of flexibility while keeping costs to a minimum. This approach requires no additional equipment, and despite the minor alterations to the structure, it uses MRF’s full flexibility by delaying the brace action while minimizing substantial and undesirable displacements. This bracing method combines the major advantages of MRFs with cable bracing. For 1, 3, and 6-story 2D frames, the performance of frames that use the provided bracing mechanism was investigated. The numerical results of the dynamic analyses done for this study reveal that the proposed bracing approach was successful for the seismic protection of the structure. The relative displacement of the floors is substantially decreased when using the suggested method, yet the designer may make the structure’s behavior predictable by adjusting the model specifications. The fluctuations in axial forces and moments transferred to the beams and columns, as well as the forces applied to the structural cables, and most importantly, the stresses subjected to the central plate, are investigated in this study. Another advantage of this research is that it demonstrates how this method may lead all cables to share a considerable portion of the load-bearing capacity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1256424
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact