MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This “brilliant” technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses. Whereas the high localization precision is definitely a strength of the MINFLUX technique, limitations and challenges also exist, especially in the labeling procedures aiming at appropriate density and on/off switching kinetics. This primer presents some significant results achieved with MINFLUX so far and highlights specific operational procedures crucial for this technique.

MINFLUX Nanoscopy: A “Brilliant” Technique Promising Major Breakthrough

Salerno, Marco;Bazzurro, Virginia;Angeli, Elena;Roushenas, Mohammadmehdi;Pakravanan, Kimiya;Diaspro, Alberto
2025-01-01

Abstract

MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This “brilliant” technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses. Whereas the high localization precision is definitely a strength of the MINFLUX technique, limitations and challenges also exist, especially in the labeling procedures aiming at appropriate density and on/off switching kinetics. This primer presents some significant results achieved with MINFLUX so far and highlights specific operational procedures crucial for this technique.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1258742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact