The integration of artificial intelligence (AI) into chest radiography (CXR) has greatly impacted both human and veterinary medicine, enhancing diagnostic speed, accuracy, and efficiency. In human medicine, AI has been extensively studied, improving the identification of thoracic abnormalities, diagnostic precision in emergencies, and the classification of complex conditions such as tuberculosis, pneumonia, and COVID-19. Deep learning-based models assist radiologists by detecting patterns, generating probability maps, and predicting outcomes like heart failure. However, AI is still supplementary to clinical expertise due to challenges such as data limitations, algorithmic biases, and the need for extensive validation. Ethical concerns and regulatory constraints also hinder full implementation. In veterinary medicine, AI is still in its early stages and is rarely used; however, it has the potential to become a valuable tool for supporting radiologists in the future. However, challenges include smaller datasets, breed variability, and limited research. Addressing these through focused research on species with less phenotypic variability (like cats) and cross-sector collaborations could advance AI in veterinary medicine. Both fields demonstrate AI’s potential to enhance diagnostics but emphasize the ongoing need for human expertise in clinical decision making. Differences in anatomy structure between the two fields must be considered for effective AI adaptation.
Artificial Intelligence in Chest Radiography—A Comparative Review of Human and Veterinary Medicine
Di Via, Roberto;Pastore, Vito Paolo;Odone, Francesca;
2025-01-01
Abstract
The integration of artificial intelligence (AI) into chest radiography (CXR) has greatly impacted both human and veterinary medicine, enhancing diagnostic speed, accuracy, and efficiency. In human medicine, AI has been extensively studied, improving the identification of thoracic abnormalities, diagnostic precision in emergencies, and the classification of complex conditions such as tuberculosis, pneumonia, and COVID-19. Deep learning-based models assist radiologists by detecting patterns, generating probability maps, and predicting outcomes like heart failure. However, AI is still supplementary to clinical expertise due to challenges such as data limitations, algorithmic biases, and the need for extensive validation. Ethical concerns and regulatory constraints also hinder full implementation. In veterinary medicine, AI is still in its early stages and is rarely used; however, it has the potential to become a valuable tool for supporting radiologists in the future. However, challenges include smaller datasets, breed variability, and limited research. Addressing these through focused research on species with less phenotypic variability (like cats) and cross-sector collaborations could advance AI in veterinary medicine. Both fields demonstrate AI’s potential to enhance diagnostics but emphasize the ongoing need for human expertise in clinical decision making. Differences in anatomy structure between the two fields must be considered for effective AI adaptation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



