Quantifying turbulence effects is crucial for understanding building aerodynamics and for ensuring accurate wind tunnel test methods. This is especially important in wind tunnel methods that require post-experiment adjustments because approximate wind fields are used, such as the Partial Turbulence Simulation (PTS) approach. Understanding and analyzing these effects enables load adjustments since the PTS method only requires matching the high frequency portions of the upstream spectra of the longitudinal velocity component in model and full-scale. However, the limits for which the PTS method is applicable are unclear in terms of the allowable range of wind field characteristics that can be used in the wind tunnel simulation. To address this, the paper utilizes two nondimensional parameters, one representing the small-scale turbulence energy, ES, and the other the large-scale turbulence energy, EL, to elaborate the aerodynamic effects of turbulence intensity and integral length scales in the upstream wind. The results show that the maximum allowable mismatch ratio of integral length scales and of Jensen numbers between model and full-scale simulations depend on the target small-scale turbulence energy and the maximum allowable deviation of small-scale energy. By quantifying the effects of ES and EL on area-averaged pressure coefficients, the allowable limits are identified for wind tunnel test parameters that lead to negligible differences in the resultant pressure coefficient statistics in regions of separated-reattaching flow on the roof of a low-rise building.

Requirements for partial turbulence simulations using nondimensional turbulence energy contributions

Stefano Brusco;
2024-01-01

Abstract

Quantifying turbulence effects is crucial for understanding building aerodynamics and for ensuring accurate wind tunnel test methods. This is especially important in wind tunnel methods that require post-experiment adjustments because approximate wind fields are used, such as the Partial Turbulence Simulation (PTS) approach. Understanding and analyzing these effects enables load adjustments since the PTS method only requires matching the high frequency portions of the upstream spectra of the longitudinal velocity component in model and full-scale. However, the limits for which the PTS method is applicable are unclear in terms of the allowable range of wind field characteristics that can be used in the wind tunnel simulation. To address this, the paper utilizes two nondimensional parameters, one representing the small-scale turbulence energy, ES, and the other the large-scale turbulence energy, EL, to elaborate the aerodynamic effects of turbulence intensity and integral length scales in the upstream wind. The results show that the maximum allowable mismatch ratio of integral length scales and of Jensen numbers between model and full-scale simulations depend on the target small-scale turbulence energy and the maximum allowable deviation of small-scale energy. By quantifying the effects of ES and EL on area-averaged pressure coefficients, the allowable limits are identified for wind tunnel test parameters that lead to negligible differences in the resultant pressure coefficient statistics in regions of separated-reattaching flow on the roof of a low-rise building.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1264016
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact