In this paper we study the structure theory of normed modules, which have been introduced by Gigli. The aim is twofold: to extend von Neumann's theory of liftings to the framework of normed modules, thus providing a notion of precise representative of their elements; to prove that each separable normed module can be represented as the space of sections of a measurable Banach bundle. By combining our representation result with Gigli's differential structure, we eventually show that every metric measure space (whose Sobolev space is separable) is associated with a cotangent bundle in a canonical way.

Representation theorems for normed modules

Di Marino S.;
2025-01-01

Abstract

In this paper we study the structure theory of normed modules, which have been introduced by Gigli. The aim is twofold: to extend von Neumann's theory of liftings to the framework of normed modules, thus providing a notion of precise representative of their elements; to prove that each separable normed module can be represented as the space of sections of a measurable Banach bundle. By combining our representation result with Gigli's differential structure, we eventually show that every metric measure space (whose Sobolev space is separable) is associated with a cotangent bundle in a canonical way.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1265116
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact