In physical human-robot interaction, force feedback has been the most common sensing modality to convey the human intention to the robot. It is widely used in admittance control to allow the human to direct the robot. However, it cannot be used in scenarios where direct force feedback is not available since manipulated objects are not always equipped with a force sensor. In this work, we study one such scenario: the collaborative pushing and pulling of heavy objects on frictional surfaces, a prevalent task in industrial settings. When humans do it, they communicate through verbal and non-verbal cues, where body poses, and movements often convey more than words. We propose a novel context-aware approach using Directed Graph Neural Networks to analyze spatiotemporal human posture data to predict human motion intention for non-verbal collaborative physical manipulation. Our experiments demonstrate that robot assistance significantly reduces human effort and improves task efficiency. The results indicate that incorporating posture-based context recognition, either together with or as an alternative to force sensing, enhances robot decision-making and control efficiency.

Context-Aware Collaborative Pushing of Heavy Objects Using Skeleton-Based Intention Prediction

Idil Ozdamar;
2025-01-01

Abstract

In physical human-robot interaction, force feedback has been the most common sensing modality to convey the human intention to the robot. It is widely used in admittance control to allow the human to direct the robot. However, it cannot be used in scenarios where direct force feedback is not available since manipulated objects are not always equipped with a force sensor. In this work, we study one such scenario: the collaborative pushing and pulling of heavy objects on frictional surfaces, a prevalent task in industrial settings. When humans do it, they communicate through verbal and non-verbal cues, where body poses, and movements often convey more than words. We propose a novel context-aware approach using Directed Graph Neural Networks to analyze spatiotemporal human posture data to predict human motion intention for non-verbal collaborative physical manipulation. Our experiments demonstrate that robot assistance significantly reduces human effort and improves task efficiency. The results indicate that incorporating posture-based context recognition, either together with or as an alternative to force sensing, enhances robot decision-making and control efficiency.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1265799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact