Polyethylene terephthalate glycol-modified (PETG) is a transparent, stable copolymer com- monly used in biomedical devices such as surgical guides, clear aligners, and anatomical models. Its biocompatibility must be assessed not only for cytotoxicity, but also for sub- tle molecular and immunological responses, especially when in contact with mucosal or hormone-sensitive tissues. This study evaluated the biological safety of PETG processed via CNC milling and CO2 laser cutting, two methods that preserve bulk chemistry but may alter surface properties. PETG diskettes were analyzed by FT-IR, 1H-NMR, and GC–MS to confirm chemical integrity and absence of degradation products. Biocompatibility was tested using MCF-7 epithelial cells and THP-1 monocytes. Cell viability remained above 90% over seven days. Inflammatory (COX-2, TNFα, IL-8, IL-1α, IL-4, IL-10, IFNγ) and hormone-related (ERα, ERβ) gene expression was analyzed by qRT-PCR. Gene profiling revealed only modest, non-significant changes: COX-2 was upregulated 1.8-fold after laser processing, and ERα increased 1.6-fold following milling—both below thresholds considered biologically active. These findings indicate that mechanical surface treatments induce minimal bioactivity, with no meaningful immune or hormonal stimulation. PETG remains functionally inert under the tested conditions, supporting its continued safe use in intraoral and hormone-sensitive biomedical applications.

Molecular Biocompatibility Assessment of PETG Aligners After Processing by Laser or Milling

Candida, Ettore;Silvestrini-Biavati, Francesca;Lanteri, Valentina;Ghisellini, Paola;Rando, Cristina;Ugolini, Alessandro
2025-01-01

Abstract

Polyethylene terephthalate glycol-modified (PETG) is a transparent, stable copolymer com- monly used in biomedical devices such as surgical guides, clear aligners, and anatomical models. Its biocompatibility must be assessed not only for cytotoxicity, but also for sub- tle molecular and immunological responses, especially when in contact with mucosal or hormone-sensitive tissues. This study evaluated the biological safety of PETG processed via CNC milling and CO2 laser cutting, two methods that preserve bulk chemistry but may alter surface properties. PETG diskettes were analyzed by FT-IR, 1H-NMR, and GC–MS to confirm chemical integrity and absence of degradation products. Biocompatibility was tested using MCF-7 epithelial cells and THP-1 monocytes. Cell viability remained above 90% over seven days. Inflammatory (COX-2, TNFα, IL-8, IL-1α, IL-4, IL-10, IFNγ) and hormone-related (ERα, ERβ) gene expression was analyzed by qRT-PCR. Gene profiling revealed only modest, non-significant changes: COX-2 was upregulated 1.8-fold after laser processing, and ERα increased 1.6-fold following milling—both below thresholds considered biologically active. These findings indicate that mechanical surface treatments induce minimal bioactivity, with no meaningful immune or hormonal stimulation. PETG remains functionally inert under the tested conditions, supporting its continued safe use in intraoral and hormone-sensitive biomedical applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1268776
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact