Liquid biopsy is a minimally invasive method for biomarkers detection in body fluids, particularly in blood, which offers an elevated and growing number of clinical applications in oncology. As a result of the improvement in the techniques for DNA analysis, above all next-generation sequencing (NGS) assays, circulating tumor DNA (ctDNA) has become the most informing tumor-derived material for most types of cancer, including non-small cell lung cancer (NSCLC). Although ctDNA concentration is higher in patients with advanced tumors, it can be detected even in patients with early-stage disease. Therefore, numerous clinical applications of ctDNA in the management of early-stage lung cancer are emerging, such as lung cancer screening, the identification of minimal residual disease (MRD), and the prediction of relapse before radiologic progression. Moreover, a high number of clinical trials are ongoing to better define the impact of ctDNA evaluation in this setting. Aim of this review is to offer a comprehensive overview of the most relevant implementations in using ctDNA for the management of early-stage lung cancer, addressing available data, technical aspects, limitations, and future perspectives.

Circulating tumor DNA to guide diagnosis and treatment of localized and locally advanced non-small cell lung cancer

Tagliamento M.;Cella E.;
2024-01-01

Abstract

Liquid biopsy is a minimally invasive method for biomarkers detection in body fluids, particularly in blood, which offers an elevated and growing number of clinical applications in oncology. As a result of the improvement in the techniques for DNA analysis, above all next-generation sequencing (NGS) assays, circulating tumor DNA (ctDNA) has become the most informing tumor-derived material for most types of cancer, including non-small cell lung cancer (NSCLC). Although ctDNA concentration is higher in patients with advanced tumors, it can be detected even in patients with early-stage disease. Therefore, numerous clinical applications of ctDNA in the management of early-stage lung cancer are emerging, such as lung cancer screening, the identification of minimal residual disease (MRD), and the prediction of relapse before radiologic progression. Moreover, a high number of clinical trials are ongoing to better define the impact of ctDNA evaluation in this setting. Aim of this review is to offer a comprehensive overview of the most relevant implementations in using ctDNA for the management of early-stage lung cancer, addressing available data, technical aspects, limitations, and future perspectives.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1271478
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact