We use the polar decomposition to describe the Dirac field in terms of an effective spinorial fluid. After reformulating all covariant equations in "spinorial" signature (+ − −−), we develop a (1 + 1 + 2) covariant approach for the Dirac field that does not require the use of tetrad fields or Clifford matrices. By identifying the velocity and spin fields as the generators of time-like and space-like congruences, we examine the compatibility of a self-gravitating Dirac field with locally rotationally symmetric space-times of types I, II, and III. We provide illustrative examples to demonstrate the effectiveness of our construction.

A covariant approach to the Dirac field in LRS space-times

Stefano Vignolo;Giuseppe De Maria;Luca Fabbri;Sante Carloni
2025-01-01

Abstract

We use the polar decomposition to describe the Dirac field in terms of an effective spinorial fluid. After reformulating all covariant equations in "spinorial" signature (+ − −−), we develop a (1 + 1 + 2) covariant approach for the Dirac field that does not require the use of tetrad fields or Clifford matrices. By identifying the velocity and spin fields as the generators of time-like and space-like congruences, we examine the compatibility of a self-gravitating Dirac field with locally rotationally symmetric space-times of types I, II, and III. We provide illustrative examples to demonstrate the effectiveness of our construction.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1272579
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact