Low-voltage power converters in the 25–200 V range are increasingly employed in emerging applications such as hybrid electric vehicles (HEVs), photovoltaic systems with battery storage, and electric propulsion systems for recreational boats. In these contexts, 48 V battery systems have become standard, due to safety considerations. Among various converter topologies, H-bridge configurations operating around 100 V DC are widely used in laboratory-scale prototyping. While MOSFETs are the preferred switching devices in this voltage range, due to their high efficiency and fast switching characteristics, they also introduce design challenges related to high current slew rates and associated overvoltage spikes caused by parasitic inductances in the PCB layout. These overvoltages, though modest in absolute terms, can be critical in low-voltage systems, due to the lower device ratings. This paper presents design strategies and layout best practice for a 120 V, 50 A H-bridge converter using 200 V rated MOSFETs. The effectiveness of various mitigation techniques—including the use of ceramic capacitors in parallel with film and electrolytic types, Schottky diodes across MOSFETs, and snubber circuits—is evaluated and experimentally validated on a dedicated prototype. The results highlight the critical role of PCB design in ensuring switching reliability and device protection in low-voltage converter systems. In addition, with the design solutions shown in this study, it was possible to obtain a voltage overshoot during switching of just 165 V with a 120 V DC-link voltage, which guarantees a sufficient safety margin for the MOSFET rated voltage.
Best Practice in PCB Design with Experimental Validation of a 50 A-120 V Converter for Low-Voltage Propulsion and Energy Applications
Villa, Matteo;Cosso, Simone;Benevieri, Alessandro;Vaccaro, Luis;Passalacqua, Massimiliano;Marchesoni, Mario
2025-01-01
Abstract
Low-voltage power converters in the 25–200 V range are increasingly employed in emerging applications such as hybrid electric vehicles (HEVs), photovoltaic systems with battery storage, and electric propulsion systems for recreational boats. In these contexts, 48 V battery systems have become standard, due to safety considerations. Among various converter topologies, H-bridge configurations operating around 100 V DC are widely used in laboratory-scale prototyping. While MOSFETs are the preferred switching devices in this voltage range, due to their high efficiency and fast switching characteristics, they also introduce design challenges related to high current slew rates and associated overvoltage spikes caused by parasitic inductances in the PCB layout. These overvoltages, though modest in absolute terms, can be critical in low-voltage systems, due to the lower device ratings. This paper presents design strategies and layout best practice for a 120 V, 50 A H-bridge converter using 200 V rated MOSFETs. The effectiveness of various mitigation techniques—including the use of ceramic capacitors in parallel with film and electrolytic types, Schottky diodes across MOSFETs, and snubber circuits—is evaluated and experimentally validated on a dedicated prototype. The results highlight the critical role of PCB design in ensuring switching reliability and device protection in low-voltage converter systems. In addition, with the design solutions shown in this study, it was possible to obtain a voltage overshoot during switching of just 165 V with a 120 V DC-link voltage, which guarantees a sufficient safety margin for the MOSFET rated voltage.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



