Serpentinite soils represent extreme environments characterized by deficiencies in essential nutrients (Ca, K, P, N), an unfavorable Ca/Mg ratio, low water retention, and elevated concentrations of several geogenic potentially toxic elements (PTEs). In particular, the study site, located in Sassello (Liguria, Italy) within the serpentinites of the High-Pressure–Low-Temperature (HP–LT) metaophiolites of the Voltri Massif, exhibited concentrations of chromium, nickel and cobalt exceeding Italian legal thresholds by up to one order of magnitude. This study aimed to assess fungal diversity and to isolate culturable strains naturally adapted to these challenging conditions for potential use in bioremediation. Culturable-dependent analyses allowed for the isolation of viable fungal strains, with Penicillium (52%), Umbelopsis (17.9%), and Aspergillus (11.6%) found as dominant genera. Additionally, metabarcoding analyses provided a broader view of fungal community composition, revealing the presence and distribution of both culturable and non-culturable taxa. The combined approach highlighted the richness of the serpentinite soil mycobiota and its role as a reservoir of PTE-resistant organisms. These findings offer new insights into the ecology of metal-rich soils and identify promising candidates for sustainable remediation strategies in PTE-contaminated environments.
Fungi and Potentially Toxic Elements (PTEs): Exploring Mycobiota in Serpentinite Soils
Laura Canonica;Grazia Cecchi;Simone Di Piazza;Fedra Gianoglio;Pietro Marescotti;Mirca Zotti
2025-01-01
Abstract
Serpentinite soils represent extreme environments characterized by deficiencies in essential nutrients (Ca, K, P, N), an unfavorable Ca/Mg ratio, low water retention, and elevated concentrations of several geogenic potentially toxic elements (PTEs). In particular, the study site, located in Sassello (Liguria, Italy) within the serpentinites of the High-Pressure–Low-Temperature (HP–LT) metaophiolites of the Voltri Massif, exhibited concentrations of chromium, nickel and cobalt exceeding Italian legal thresholds by up to one order of magnitude. This study aimed to assess fungal diversity and to isolate culturable strains naturally adapted to these challenging conditions for potential use in bioremediation. Culturable-dependent analyses allowed for the isolation of viable fungal strains, with Penicillium (52%), Umbelopsis (17.9%), and Aspergillus (11.6%) found as dominant genera. Additionally, metabarcoding analyses provided a broader view of fungal community composition, revealing the presence and distribution of both culturable and non-culturable taxa. The combined approach highlighted the richness of the serpentinite soil mycobiota and its role as a reservoir of PTE-resistant organisms. These findings offer new insights into the ecology of metal-rich soils and identify promising candidates for sustainable remediation strategies in PTE-contaminated environments.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



