Boron is frequently present in saline water (e.g., seawater, geothermal water, and hydrocarbon production water) due to the natural release of boric acid from minerals. While essential to life, excess boron is toxic, particularly to citrus plants, necessitating its regulation for safe water use. Current boron removal methods, such as reverse osmosis, chelating resin adsorption, and magnesium-based precipitation softening, increase water treatment complexity and cost. Ettringite, (Ca6Al2(SO4)3(OH)12·26H2O), is a clay and an effective anion adsorbent. It is also a key hydration product of Portland cement. This study explores boron removal via precipitation softening using sulfoaluminate clinker as an ettringite precursor. Raw water, a first-stage reverse-osmosis permeate from an Italian oil-and-gas site, contained approximately 15.0 mg/L of boron. Optimal removal required sulfoaluminate clinker in excess with respect to the stoichiometric dose and 150 min of contact time. The preliminary results demonstrate the feasibility of this approach, offering a viable alternative to existing methods.

Effect of Sulfoaluminate Clinker Addition on Boron Removal During Water Softening

Marco Vocciante
2025-01-01

Abstract

Boron is frequently present in saline water (e.g., seawater, geothermal water, and hydrocarbon production water) due to the natural release of boric acid from minerals. While essential to life, excess boron is toxic, particularly to citrus plants, necessitating its regulation for safe water use. Current boron removal methods, such as reverse osmosis, chelating resin adsorption, and magnesium-based precipitation softening, increase water treatment complexity and cost. Ettringite, (Ca6Al2(SO4)3(OH)12·26H2O), is a clay and an effective anion adsorbent. It is also a key hydration product of Portland cement. This study explores boron removal via precipitation softening using sulfoaluminate clinker as an ettringite precursor. Raw water, a first-stage reverse-osmosis permeate from an Italian oil-and-gas site, contained approximately 15.0 mg/L of boron. Optimal removal required sulfoaluminate clinker in excess with respect to the stoichiometric dose and 150 min of contact time. The preliminary results demonstrate the feasibility of this approach, offering a viable alternative to existing methods.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1277736
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact