A library of pyrazolo[3,4-d]pyrimidines, endowed with a high level of molecular diversity, has been developed applying a synthetic sequence that allowed C3, N1, C4, and C6 substitution. The enzymatic screening of this "privileged scaffold"-based compound collection, validated the use of a diversity-oriented approach in a field characteristically explored by target-oriented synthesis. In fact, several compounds showed high activity against the selected kinases (i.e., Src, Abl wt, and T315I mutated-form), furthermore and interestingly a new compound has emerged as an allosteric inhibitor of the T315I mutated-form of Abl, opening up new opportunities for the development of a novel class of noncompetitive inhibitors of Abl (T315I).
Exploring the Chemical Space around the Privileged Pyrazolo[3,4-d]pyrimidine Scaffold: Toward Novel Allosteric Inhibitors of T315I-Mutated Abl.
SCHENONE, SILVIA;
2014-01-01
Abstract
A library of pyrazolo[3,4-d]pyrimidines, endowed with a high level of molecular diversity, has been developed applying a synthetic sequence that allowed C3, N1, C4, and C6 substitution. The enzymatic screening of this "privileged scaffold"-based compound collection, validated the use of a diversity-oriented approach in a field characteristically explored by target-oriented synthesis. In fact, several compounds showed high activity against the selected kinases (i.e., Src, Abl wt, and T315I mutated-form), furthermore and interestingly a new compound has emerged as an allosteric inhibitor of the T315I mutated-form of Abl, opening up new opportunities for the development of a novel class of noncompetitive inhibitors of Abl (T315I).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



