We prove an explicit formula, analogous to the classical explicit formula for $psi(x)$, for the Cesaro-Riesz mean of any order $k>0$ of the number of representations of $n$ as a sum of two primes. Our approach is based on a double Mellin transform and the analytic continuation of certain functions arising therein.
Explicit formulae for averages of Goldbach representations
PERELLI, A.
2019-01-01
Abstract
We prove an explicit formula, analogous to the classical explicit formula for $psi(x)$, for the Cesaro-Riesz mean of any order $k>0$ of the number of representations of $n$ as a sum of two primes. Our approach is based on a double Mellin transform and the analytic continuation of certain functions arising therein.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
		
			| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											124-2019:B-K-P:TAMS.pdf
										
																				
									
										
											 accesso chiuso 
											Tipologia:
											Documento in versione editoriale
										 
									
									
									
									
									
										Dimensione
										270.17 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								270.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



