The current study presents the development and validation of a compliant Delta robot with a monolithic structure, which has been fabricated using additive manufacturing (AM). The monolithic design and the use of AM accelerate the robot development cycle by enabling rapid prototyping and deployment while also facilitating experimentation with novel or different robot kinematics. The use of flexible joints for robots presents a challenge in achieving sufficient workspaces. However, parallel architectures are well suited for incorporating compliant joints, as they require lower ranges of motion for individual joints compared to serial architectures. Therefore, the Delta configuration has been chosen for this study. Multibody flexible dynamics (MfBD) simulations have been used as a means to guide design choices and simulate the structural behaviour of the robot. A design for additive manufacturing (DfAM) technique has been adopted to minimize the need for support structures and maximize mechanical strength. The quantitative evaluation of the Delta’s overall performance has been conducted in terms of stiffness and precision. The stiffness test aimed to gauge the robot’s ability to withstand applied loads, whereas the repeatability test assessed its precision and accuracy. This approach offers a promising path for robot design with significant potential for future advancements and practical applications while highlighting the trade-offs that designers should consider when adopting this methodology.

DeltaFlex—An Additively Manufactured Delta Robot With Compliant Joints: Virtual Prototyping and Experimental Evaluation

Emilio Ottonello;Seyyed Masoud Kargar;Mario Baggetta;Giovanni Berselli
2024-01-01

Abstract

The current study presents the development and validation of a compliant Delta robot with a monolithic structure, which has been fabricated using additive manufacturing (AM). The monolithic design and the use of AM accelerate the robot development cycle by enabling rapid prototyping and deployment while also facilitating experimentation with novel or different robot kinematics. The use of flexible joints for robots presents a challenge in achieving sufficient workspaces. However, parallel architectures are well suited for incorporating compliant joints, as they require lower ranges of motion for individual joints compared to serial architectures. Therefore, the Delta configuration has been chosen for this study. Multibody flexible dynamics (MfBD) simulations have been used as a means to guide design choices and simulate the structural behaviour of the robot. A design for additive manufacturing (DfAM) technique has been adopted to minimize the need for support structures and maximize mechanical strength. The quantitative evaluation of the Delta’s overall performance has been conducted in terms of stiffness and precision. The stiffness test aimed to gauge the robot’s ability to withstand applied loads, whereas the repeatability test assessed its precision and accuracy. This approach offers a promising path for robot design with significant potential for future advancements and practical applications while highlighting the trade-offs that designers should consider when adopting this methodology.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11567/1265482
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact